广告
广告
基于TLC5947的旋转LED屏显示控制器设计
您的位置 资讯中心 > 技术与应用 > 正文

基于TLC5947的旋转LED屏显示控制器设计

2013-02-20 14:55:22 来源:大比特半导体器件网 点击:5910

【哔哥哔特导读】本项目是通过主控芯片STM32F103,将触摸技术与旋转LED屏幕相结合,可以实现时钟的变换,还可以利用触摸技术在旋转LED上玩一些小游戏,让旋转LED不再只是单一的观赏性的技术。

摘要:  本项目是通过主控芯片STM32F103,将触摸技术与旋转LED屏幕相结合,可以实现时钟的变换,还可以利用触摸技术在旋转LED上玩一些小游戏,让旋转LED不再只是单一的观赏性的技术。

关键字:  芯片,  LED显示屏,  LED灯,  处理器

引言

在各种设备中,显示设备占有重要地位,少了显示设备就像人少了眼睛,很多内在的东西都看不见。显示设备很重要也很常见,然而它的外形总是那么单调,像一个个的模型。旋转LED屏以其新颖、可视角360°吸引了电子狂热者的眼光。本项目是通过主控芯片STM32F103,将触摸技术与旋转LED屏幕相结合,可以实现时钟的变换,还可以利用触摸技术在旋转LED上玩一些小游戏,让旋转LED不再只是单一的观赏性的技术。

旋转LED显示屏是一种通过同步控制发光二极管(LED)位置和点亮状态来实现图文显示的新型显示屏,因其结构新颖、成本低、可视视角达360°而得到了迅速的发展。目前,常见的LED显示屏都是采用扫描方式进行显示的,其实现原理是在不同时间段内控制不同批次的LED轮流点亮,根据人眼的视觉暂留特性,当扫描帧频达到24Hz以上时,人眼便感觉不到扫描过程,而是一幅稳定的图像。

旋转显示屏则是通过控制一行或一列LED快速移动位置和改变点亮状态来实现图形的显示,如果LED在各位置循环变换速度足够快,同样可以显示出一幅稳定的图像。POV原理(即视觉滞留原理)将它用于显示屏,优势表现在可用少量LED实现传统方式下海量LED才能实现的显示屏。用单片机控制LED,触摸按键提供用户与系统交互。旋转中的LED漂浮在半空中的景观给视觉带来享受。

基于这样的现状和原理,本文提出了基于TI公司TLC5947驱动芯片及STM32F103的旋转LED屏显示控制器设计。该旋转LED屏采用人眼视觉频率滞留原理,制作的旋转LED虚拟屏在微控制器的精确控制下,使用少量的LED便可完全实现传统方式下海量LED才能实现的一种新型显示技术。旋转三基色全彩LED是基于RGB原理,通过改变三种颜色的色调、饱和度、强度可以实现最高36色真彩图片显示,从而使显示更加绚烂夺目。该旋转LED屏与平板式LED显示屏和其他显示器技术(如CRT、LCD、PDP)相比较,旋转式线阵LED屏幕有着成本低、分辨率高、功耗小等几个明显优势.

1 系统硬件设计

STM32F103通过TLC5947与LED连接,用来控制旋转板上LED灯的显示。例如可以通过单片机STM32F103控制LED灯旋转显示时钟模样或各种图形,如果条件允许的话,可以显示一些简单的游戏。LED与ARM处理器相连接,通过ARM处理器对触摸信号的处理来实现LED灯的显示样式的变化,从基态的指针式时钟变为数字显示式以及改变其显示的背景,还可以进行时间的校准操作。TLC5947驱动旋转LED屏显示控制电路如图1所示。

 

.

 

 

图1 TLC5947驱动旋转LED屏显示控制电路

1.1 STM32F103简介

选用了STM32F103控制器,STM32F103是增强型系列,最高工作时钟频率可达72 MHz,具有ARM CortexM3内核、128~256 KB Flash、20~48 KB RAM、8 MHz CPU晶振、32.768 kHz RTC晶振以及丰富的外设(64个快速I/O口)和4 GB的线性地址空间。ARM采用的仿真器很贵,而单片机的调试工具则非常便宜。相较之下,CortexM3参考单片机,专门拿出一个引脚来做调试,从而节约了大量的人力物力。CortexM3集成了大多数的存储器控制器,这样就可以直接在MCU外连接Flash,降低了设计难度和应用障碍。CortexM3处理器结合了多种突破性技术,使得它能实现低功耗、低成本、高性能三者(或二者)的结合。编程支持ISP下载功能,能通过USB端口和JLINK仿真器供电,使用起来非常方便.

1.2 TLC5947简介

TLC5947是TI(德州仪器)公司推出的24通道,具有内部晶振的12位PWM脉宽调制的LED驱动芯片。TLC5947采用超小32引脚QFN的高级封装[7].它为LED提供了精确的恒流值,通道与芯片之间的差异值只有±2%;高速的传输速率(单片芯片时30 MHz,级联为15MHz);输出通道之间交错时间迟滞,避免出现传输误差;该芯片内部具有温度检测系统,当芯片的温度过高时为了保护芯片,它会自动断开所有的输出通道,当温度恢复正常,芯片正常工作;该芯片支持级联,可以多个芯片共同工作以驱动更大规模的LED显示屏幕。24个通道的当前电流值是通过外部IREF与地之间的阻值来设置的,驱动电路中的电阻由所驱动LED灯的电流决定。芯片具有宽泛的操作电压30~55 V,含有4 MHz的内部晶振。TLC5947适用驱动全彩LED和显示屏。

1.3 LED显示屏

选用三色(RGB)LED灯,实现多重色彩光源,绚丽多彩的输出。同时,LED本身也具备相当的稳定度、高效率、单色彩纯度高、光强度可调等功能。LED与ARM处理器相连接,通过ARM处理器对触摸信号的处理来实现LED灯的显示样式的变化,从基态的指针式时钟变为数字显示式,以及改变其显示的背景,还可以进行时间的校准操作。

2 系统软件设计

2.1 点亮点线圆的设计及其算法和公式

点设计主要应用直角坐标到圆坐标转换,通过坐标转换点亮任何位置的灯。线设计源于点设计,在点设计基础上采用Bresenham直线演算法画出所需的直线、斜线、曲线。在线设计基础上衍生出矩形绘画、绘图、填充等功能。

程序初始化完了,接着定义由直角坐标转换到极坐标,在程序中将弧度转到角度,在转换的时候考虑到会有负数数据的输入,加入360+0.5均是为了优化程序,防止出现误差。程序中距离r=x2+y2,角度a=180×arctanxyπ+360+0.5.

直角坐标到圆坐标转换算法如下:

void ConCoor(int x,int y,int *rad,int *angle) {

double r,a;

r=sqrt(x*x+y*y);

a=(180*atan2(x,y))/PI+360+0.5;

if(a>=360)

a=a-360;

(*rad)=r;

(*angle)=a;

}

直角坐标转换完后,可以设置点的亮灭,接着用Bresenham直线演算法画出直线。

[#page#]

程序的整体流程如图2所示。系统上电后,首先读取系统的初始状态,设置ARM和TLC5947的工作状态,开启无线通信;然后等待旋转屏幕稳定,初始化菜单,等待输入指令;利用Qtouch控制传输命令到STM32F103,执行指令(用户交互过程);执行用户命令操作。

 

 

图2 程序的整体流程

2.2 TLC5947芯片时序

TLC5947时序如图3所示,芯片的主要控制引脚有4个[10]:数据输入端SIN、外部时钟输入端SCLK、灰度寄存器控制端XLAT以及输出控制端BLANK.通过数据输入端口将所需要的灰度数据送到SIN端,然后通过控制时钟信号SCLK将数据写入到芯片内部的灰度数据移位寄存器中,之后通过控制灰度寄存器的控制端XLAT的高低电平变换实现芯片TLC5947内部灰度数据的更新。

当XLAT引脚的电平发生变化而产生一个上升沿时,TLC5947内部灰度数据将被更新一次,即图3中Grayscale LatchData 中被重新写入数据。芯片的数据输出分两部分,一部分是串行数据输出和恒流源数据输出。串行数据输出是接在灰度数据移位寄存器之后,当寄存器的数据满256位时,可以根据SCLK时钟的变化通过一个DQ触发器将数据从串行数据端口SOUT端输出,这一端口主要是芯片级联时后一级芯片的数据输入;而恒流源数据输出OUT0~OUT23则是通过输出控制端口BLANK和芯片内部自带时钟Oscillator Clock来共同控制,其中输出电流大小则可以通过芯片的VREF引脚的外接到地电阻来控制,根据外接LED的自身限流参数,保证LED正常工作。本系统中采用的是3.2 kΩ电阻,所以该芯片的控制主要是4个引脚端口的控制,操作上比较简单方便。

 

 

图3 TLC5947时序图

3 结论

实验中,通过主控制器STM32F103对两片级联的TLC5947芯片进行了测试,外围电路连接的是三色LED灯,外界供电电压为5 V稳压源,转换之后系统的供电电压为3.3 V稳压源。当写入相对应的程序控制字时,三色LED灯能够正确显示,单一色、混色两种工作模式均成功得以实现。而且LED灯之间的变化时间可以通过程序来控制,只要主控制器的时钟频率合适,变换时间均在人眼识别能力之外,这样就可以通过改变不同的程序控制字来实现全彩LED屏的设计。

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;

阅读延展
芯片 LED显示屏 LED灯 处理器
  • 英飞凌推出新型PSoC™汽车多点触控控制器,为OLED和超大屏幕提供卓越的触控性能

    英飞凌推出新型PSoC™汽车多点触控控制器,为OLED和超大屏幕提供卓越的触控性能

    英飞凌科技股份公司推出新一代触控控制器——PSoC™ GEN8XL汽车多点触控控制器(IAAT818X)。该触控控制器专为24英寸及以下的OLED和Micro-LED 显示屏设计,其性能和帧速率均能满足当今的需求。

  • LED显示屏应用需求与驱动IC技术路线

    LED显示屏应用需求与驱动IC技术路线

    led显示屏不断发展,驱动IC占据了重要的位置,驱动IC与逻辑IC以及MOS开关组成的周边IC共同作用于LED显示屏的显示功能。且决定了其呈现的效果。随着LED显示屏三高需求明显,来源于应用端需求驱动IC逐渐迈入了驱动IC高集成化的技术路线。

  • IC在照明与显示领域扮演怎样的角色?

    IC在照明与显示领域扮演怎样的角色?

    LED显示屏是被应用得极其普遍的一种产品设备,最常见的莫过于电脑、幕墙屏、橱窗屏,还有在体育赛事、演唱会场合常见的互动地砖屏、透明屏,然而,当LED耗电较大的时候,驱动IC的重要作用就体现出来了,那么,IC在照明与显示领域扮演怎样的角色呢?

  • LED显示屏驱动IC的发展有多快

    LED显示屏驱动IC的发展有多快

    文本主要介绍了LED显示器的应用技术和情景在不断更新,同时随着不断更新驱动IC也产生了许多问题,驱动IC技术不断创新。

  • 关于led显示屏驱动ic这几个方面的介绍

    关于led显示屏驱动ic这几个方面的介绍

    本文主要介绍了led显示屏不可或缺的一部分:驱动IC。依次介绍了驱动ic的演变,驱动ic的性能参数指标,驱动ic的发展趋势。

  • led显示屏创新发展史

    led显示屏创新发展史

    本文主要介绍了led显示屏发展史,不断微创新,不断演变,一满足客户个性化的需要求。新型led屏幕企业不断涌现。

  • NFC无线灵活配置LED驱动电源

    NFC无线灵活配置LED驱动电源

    从而减少驱动电源的种类,缩短开发周期,降低库存,缩短交货时间。如有需要,最终用户也可以重新配置驱动电源来适配LED灯具。

  • LED工业照明趋势促进关键市场创新

    LED工业照明趋势促进关键市场创新

    新的建筑正在把采用LED照明作为首选,工业环境也正在过渡到LED。高效LED灯可以大大降低照明费用。连接器供应商正在帮助运营商设计新的布线架构,将LED固定装置和组件集成到建筑系统中,包括智能建筑和物联网。

  • 防水需求冲击市场 连接器必须把好检验这一关

    防水需求冲击市场 连接器必须把好检验这一关

    电源与水不可发生触碰,这是最基本的生活常识,正如我们所有的电子产品、LED灯具、手表等都不能与水有过于“亲密”的接触,但现今市面上已经出现了具有防水功能的产品,随着需求激增,防水需求冲击市场,不过,为实现这一步,作为防水连接器必须把好检验这一关。

  • 浅析对于led灯常见故障点电源以及处理方式

    浅析对于led灯常见故障点电源以及处理方式

    本文首先介绍了常见led路灯结构:灯头与电源分离。进一步引出了现如今led等常见故障关键点在电源并浅析得讲解怎么去解决这个问题的。

  • 一个好的电源芯片U6113对led优劣的重要性

    一个好的电源芯片U6113对led优劣的重要性

    本问主要介绍了一个好的led灯需要一个好的led驱动电源芯片,配合起来才能发挥真正的效果,以及介绍了led灯最佳搭档驱动器电源芯片U6113。

  • 持续高温下led显示屏会出现什么样的问题

    持续高温下led显示屏会出现什么样的问题

    随着led显示屏的使用日益普遍,日常使用led显示屏的过程中可能会应该led显示屏温度过高,led显示屏led灯珠遭到光损。除了灯珠光损问题,还有其他问题?

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任