3个角度分析COB技术的LED散热性能
2015-11-10 16:45:21 来源:互联网 点击:1141
【哔哥哔特导读】本文重点从封装角度对LED的散热性能进行热分析,并进行热设计。采用COB技术,直接将LED芯片封装在铝基板上,缩短了热通道和热传导的距离,从而降低了LED的结温,设计出一种基于COB技术的LED。分析其等效热阻网络,比较不同封装方法对整个LED器件散热性能的影响,并进行红外热像图分析。
本文重点从封装角度对LED的散热性能进行热分析,并进行热设计。采用COB技术,直接将LED芯片封装在铝基板上,缩短了热通道和热传导的距离,从而降低了LED的结温,设计出一种基于COB技术的LED。分析其等效热阻网络,比较不同封装方法对整个LED器件散热性能的影响,并进行红外热像图分析。
引言
LED器件在工作中的功率损耗通常以热能耗散的形式表现,任何具有电阻的部分都成为一个内部热源,导致热密度急剧上升,于是器件本身温度也随之上升,同时周围的环境温度也会影响内部温度,从而影响到LED的可靠性、性能和寿命。研究表明,随着温度的增长,芯片失效率有增长的趋势,因此对LED封装时进行可靠的热设计,实施有效的热控制措施是提高其可靠性的关键。
在电子行业,器件环境温度每升高10℃时,往往其失效率会增加一个数量级,这就是所谓的“10℃法则”。当前采用的方法大多是从电路板的材料考虑,选用一些热导率高、稳定的材料,如铜、铝、陶瓷等。但仅仅通过电路板来改善散热问题是不够的,还要通过其他热设计的方法来提高LED的散热性能。
散热技术
任何电子器件及电路都不可避免地伴随有热量的产生,而要提高其可靠性以及性能,则必须使热量达到最小程度,采用适当的散热技术就成为了关键。
物质本身或当物质与物质接触时,能量的传递就被称为热传导,这是最普遍的一种热传递方式,由能量较低的粒子和能量较高的粒子直接接触碰撞来传递能量。相对而言,热传导方式局限于固体和液体,因为气体的分子构成并不是很紧密,它们之间能量的传递被称为热扩散。
热传导的基本公式为:
Q=K×A×ΔT/ΔL (1)
其中Q代表为热量,也就是热传导所产生或传导的热量;K为材料的热传导系数,热传导系数类似比热,但又与比热有一些差别,热传导系数与比热成反比,热传导系数越高,其比热的数值也就越低。举例说明,纯铜的热传导系数为396.4,而其比热则为0.39;公式中A代表传热的面积(或是两物体的接触面积),ΔT代表两端的温度差;ΔL则是两端的距离。因此,从公式中我们就可以发现,热量传递的大小同热传导系数、传热面积成正比,同距离成反比。热传递系数越高、热传递面积越大,传输的距离越短,那么热传导的能量就越高,也就越容易带走热量。
LED的散热性能和封装
LED作为一代新光源,逐步应用到普通照明中来,其最基本的光学要求即光通量,目前提高LED光通量有两种方式,分别为增加芯片亮度以及多颗密集排列等方式,这些方法都需输入更高功率的能量,而输入LED的能量,只有少部分会转换成光源,大部分都转成热能,在单颗封装内送入倍增的电流,发热自然也会倍增,因此在如此小的散热面积下,散热问题会逐渐恶化。
与传统光源一样,LED在工作期间也会产生热量,其多少取决于整体的发光效率。在外加电能量作用下,电子和空穴的辐射复合发生电致发光,在PN结附近辐射出来的光还需经过LED芯片本身的半导体介质和封装介质才能抵达外界。综合电流注入效率、辐射发光量子效率、晶片外部出光效率等,最终大概只有30%~40%的输入电能转化为光能,其余60%~70%的能量主要以非辐射复合发生的点阵振动的形式转化成热能。而LED芯片温度的升高,则会增强非辐射复合,进一步削弱发光效率,并且缩短寿命。LED灯所采用的散热技术必须能够有效降低发光二级管PN结到环境的热阻,才能尽可能降低LED的PN结温度来提高LED灯的寿命。
图1所示为在工作电流恒定的条件下,Lumidleds1W LED的光衰与结温的关系曲线,可见结温越高,光通量衰减越快,寿命也就越短。
3.1 LED的散热
LED的散热性能参数主要是指结温和热阻。LED的结温是指PN结的温度,LED的热阻一般是指PN结到外壳表面之间的热阻。结温是直接影响LED工作性能的参数,热阻则是表示LED散热性能好坏的参数。热阻越小,LED的热量越容易从PN结传导出来,LED的结温越低,LED的持续光效越高,寿命也越长。
当LED的PN结温度升高时,会导致LED的正向导通压降减小,意味着一旦回路中的LED出现过度温升,PN结对此的响应会使LED的温度进一步升高,如果LED芯片的温度超过一定值,整个LED器件就会损坏,这一温度值即临界温度。不同封装材料的LED的临界温度不同,即使是同一材料,封装工艺等因素也会影响临界温度。与传统光源不同的是,印制电路板既是LED的供电载体,同时也是散热载体。因此,印制电路板的散热设计(包括焊盘设置、布线和镀层等)对LED的散热性能尤为重要。
3.2 封装工艺对散热性能的影响
目前市场上对LED芯片的封装以单颗封装为主,单颗封装如仅应用在1~4颗LED散光灯,散光灯点亮时间短暂,故热累积现象不明显。如应用在日光灯上,要紧密排列并较长时间点亮,因此在有限的散热空间内难以及时地将这些热排除于外。
LED芯片的特点是在极小的体积内产生极高的热量。而LED本身的热容量很小,所以必须以最快的速度把这些热量传导出去,否则就会产生很高的结温。
虽然LED芯片架构与原物料是影响LED热阻大小的因素之一,减少LED本身的热阻是先期条件,但毕竟对改善散热能力影响有限,所以通过选择适当的LED封装工艺技术成为对LED进行散热设计的主要方法。表1列出的是市场上常见的几种不同封装工艺LED的热阻。
可见采用COB技术封装的LED相比于其他封装工艺热阻最小。
声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。
汽车设计中最明显的进步之一是LED照明。 LED照明现在已经在每个制造商的汽车上广泛使用。在本世纪,发光二极管(LED)和有机LED(OLEDS)发展迅速,其优越的性能,更长的寿命,效率,承受性,和设计灵活性使他们是大多数汽车照明应用的优先选择。
据TrendForce集邦咨询分析,截至2023年,全球传统乘用车中LED头灯的普及率已达72%,而在电动汽车领域,这一比率更是高达94%;预计2024年,这两项数据将分别上升至75%与96%。
英飞凌科技股份公司推出新一代触控控制器——PSoC™ GEN8XL汽车多点触控控制器(IAAT818X)。该触控控制器专为24英寸及以下的OLED和Micro-LED 显示屏设计,其性能和帧速率均能满足当今的需求。
钿威于2024年推出一款新的反向沉板 FPC连接器,助力 Mini LED 技术发展需求,该产品在基板正面的露出高度仅0.3mm,完全低于灯珠高度,连接器对成像质量不会造成任何负面影响。
汽车LED前照大灯的创新设计,作为车辆不可或缺的重要组成,性能不仅直接关系到夜间行车安全,更是体现车辆设计水平和品质的重要标志。
LED技术不断进步,以满足不断发展的需求。这种进步包括集成先进功能,如智能照明与物联网(IoT)技术,以及通过提高发光效率、热量管理和整体性能来提高LED照明或指示灯的效率。
第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!
发表评论