广告
广告
一起来分享有关检查电容器的窍门吧
您的位置 资讯中心 > 技术与应用 > 正文

一起来分享有关检查电容器的窍门吧

2020-08-11 08:54:53 来源:电子发烧友网 点击:1655

【哔哥哔特导读】传统式的电容器的体积比较大,已经满足不了人们的多种需要了,但是贴片电容器就不一样了,它具有体积小、使用时间长、耐高温等多种优点,因此受到了大家的一致好评,那么你知道当贴片电容器出现故障时,首先我们应该怎么做吗?

我们都清楚贴片电容器是一种电容材料。贴片电容器称之为片容。贴片电容器有二种表明方式,一种是英寸单位来表明,一种是毫米单位来表明。今天我们来聊聊检测贴片电容器的较好方法是什么。

贴片电容器出现故障和检验方式是?

1)同一种类的电容,块头越大或色调越重,容积也越大。电容的容积可以用专用型的电容检测仪来测量,现阶段一些数字万用表,也有这一关键作用的。测电容量的时候,至少需要把贴片电容器松掉一端,清除外电路的危害后,才可以再次检验。

2)用数字万用表来检验贴片电容器。假如在线监测,万用表测量得到电容两脚位中间的电阻值,实际上是与电容相互连接的外电路“综合性电阻值”,若电容处在短路故障或趋于短路故障状况(电阻值极低)下,才可以有一定的体现。将电容器松掉原电源电路,精确测量其电阻值应是无穷大。用针表的×10k挡精确测量时,0.lμF上下的电容表针有颤动(电池充电)状况,静止不动后归入无穷大。若测出固定电阻值,表明电容就已经损坏了。

3)通电检验,由电源电路分辨该点工作电压减少,可能是贴片电容器走电造成。这也是一个比较好的方式。

在所示电源电路中,精确测量a点工作电压标准值应是R221、R22对3V供电系统的分压电路值1.5V,若精确测量工作电压值高过1.5V,很有可能系电容C112走电损坏引发;测b点工作电压标准值应是3V,若小于3V,很有可能系电容C56走电损坏引发。

进一步,可将C112或C56焊脱电源电路,对其脚位电阻值开展精确测量认证。当贴片电容器损坏时,也同明确电阻的电阻值一样,可参照类似电源电路,测到好的电容元器件的电容量,来明确常见故障电容的主要参数。如晶振电路脚位电容损坏一只,测另一脚电容元器件的电容量就可以,二只电容的容积是一样的。

常见故障电容的代用:贴片电容器的返修率较低,各种规格型号的贴片电容器必须配件,显而易见不是实际的,有时候发觉损坏元器件时,用一般的同容积瓷砖或涤纶布电容来代用,是彻底能够的,留意导线尽可能要短,电焊焊接品质要好些。

其实检测贴片电容器损坏的方法有很多,还想了解更多的可以继续关注我们!

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

阅读延展
贴片电容 电容 电容器
  • 贴片电容受到大家喜欢的缘故

    贴片电容受到大家喜欢的缘故

    电容器的种类有很多,其中比较受欢迎的是贴片电容器,下面会介绍到为什么贴片电容器会那么受到大家的喜欢,然后还会分享到如何正确检测贴片电容器的好坏。

  • 一起说说这种电容不可替代贴片电容的缘故

    一起说说这种电容不可替代贴片电容的缘故

    你们是否也想知道直插电容可不可以代替贴片电容呢?在销售市场上很明显就是贴片电容器比直插电容器更加受欢迎,具体原因是什么呢?看看这篇文章你们就知道了。

  • 鉴别电容的技巧 一起学习下吧

    鉴别电容的技巧 一起学习下吧

    电容器是我们经常会运用到的元器件之一,随着时代的发展,一般的电容器已经满足不了我们的需求了,因此贴片电容器就诞生了,关于贴片电容器的一些小知识,你有兴趣的可以看看这篇文章噢!

  • 一起聊一聊安规电容

    一起聊一聊安规电容

    我们都清楚电容器的品种是多种多样的,之前我们就分享过贴片电容、超级电容器等,今天给大家深入介绍一下安规电容,小编会从两个方面来介绍安规电容,下面大家就跟着小编一起来认识一下安规电容吧!

  • 分享电容器中的贴片电容 一起来了解吧

    分享电容器中的贴片电容 一起来了解吧

    本文首先介绍了贴片电容在电路中有什么作用;其次介绍了贴片电容在电路中的滤波、退耦、耦合等电容器的主要作用,最后介绍贴片电容的五个特点以及贴片电容需要注意的地方。

  • 一起来聊聊电容器 你对它了解多少呢

    一起来聊聊电容器 你对它了解多少呢

    本文首先介绍了贴片电容跟贴片电阻一样,都属于最基本的电子元件,基本上所以的电子设备都会有电容器的存在,不过不同位置的电容所起到的作用是不一样的,然后介绍贴片电容的六个作用。

  • 集成NPU的MCU,ST、PI等新品速览

    集成NPU的MCU,ST、PI等新品速览

    意法半导体、Microchip、英飞凌、PI等全球半导体头部厂商发布新品,包括MCU、电容式触摸控制器、三相栅极驱动器和开关IC。

  • 平面磁元件在功率转换的优势

    平面磁元件在功率转换的优势

    对电源转换系统高功率密度解决方案的不懈追求,最近产生了有趣的新工程理念和转换拓扑。如果不是全部的话,大多数都取决于理论预测,即磁性元件和电容器的尺寸应该随着转换频率的增加而减小。

  • 绿宝石二十载:如何打破国外在高端电容市场的垄断?

    绿宝石二十载:如何打破国外在高端电容市场的垄断?

    作为本土电容器企业,绿宝石凭借二十年的技术创新与市场深耕,在高端电容市场取得了显著突破。从铝电解电容器到叠层式固态电容器,绿宝石是如何做到的?

  • 施主掺杂对ZnO压敏电阻电气性能的影响

    施主掺杂对ZnO压敏电阻电气性能的影响

    研究了铝离子、铟离子共同掺杂对ZnO压敏电阻的微观结构和电学性能的影响。通过X射线衍射、扫描电子显微镜对微观结构进行了表征,通过电流-电压测试、脉冲电流冲击测试和电容-电压测试对电性能进行了评估。

  • 用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    Littelfuse公司发布了电子保险丝保护集成电路系列的最新成员——LS0502SCD33S。 这款新开发的产品引入了单电池超级电容器保护集成电路,专为极端条件下的备用电源充电而定制,在该领域树立了新的基准。

  • 交错并联LLC谐振变换器的磁集成均流特性研究

    交错并联LLC谐振变换器的磁集成均流特性研究

    为了扩充容量,LLC谐振变换器多采用两相或多相交错并联结构。然而,由于交错并联LLC谐振变换器中各并联相的谐振元件参数(主要包括谐振电感和谐振电容)不可避免地存在偏差,使得各相LLC谐振变换器之间的电压增益不相等,导致各相电流不均衡。

  • 平面磁元件在功率转换的优势

    平面磁元件在功率转换的优势

    对电源转换系统高功率密度解决方案的不懈追求,最近产生了有趣的新工程理念和转换拓扑。如果不是全部的话,大多数都取决于理论预测,即磁性元件和电容器的尺寸应该随着转换频率的增加而减小。

  • 绿宝石二十载:如何打破国外在高端电容市场的垄断?

    绿宝石二十载:如何打破国外在高端电容市场的垄断?

    作为本土电容器企业,绿宝石凭借二十年的技术创新与市场深耕,在高端电容市场取得了显著突破。从铝电解电容器到叠层式固态电容器,绿宝石是如何做到的?

  • 用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    Littelfuse公司发布了电子保险丝保护集成电路系列的最新成员——LS0502SCD33S。 这款新开发的产品引入了单电池超级电容器保护集成电路,专为极端条件下的备用电源充电而定制,在该领域树立了新的基准。

  • 一种快速多相变换电感电压调节器

    一种快速多相变换电感电压调节器

    数据中心采用功能强大的应用于特定的集成电路(ASIC),这些电路消耗大量电流,例如高达1000安培,并且其功率需求波动迅速。由于各种因素,例如较大的输出阻抗、去耦电容器占用的空间越来越大等,传统上为此类负载供电的多相电压调节器正达到其性能极限。本文描述了一种多相变换电感电压调节器(TLVR)。

  • 压敏电阻的电容特性

    压敏电阻的电容特性

    压敏电阻两个电极之间都是氧化锌材料,平时就是呈高阻的近似绝缘体。所以压敏电阻就是相当标准的电容器结构。压敏电阻两电极间呈现的电容,在几百pF~几千pF之间,因而它不利于对高频电子系统的保护。对于频率较高的系统的保护,应选择电容低的压敏电阻。文章综述介绍了压敏电阻的电容特性。

  • 采用锂离子电容器的高效率储能系统

    采用锂离子电容器的高效率储能系统

    近年来,由火力发电或是汽车,排出CO2导致的全球变暖正急速加剧,法国巴黎2019年夏达到史上最高气温43℃,2021年夏科威特首都更不可思议的出现罕见的73℃高温。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任