广告
广告
一起说说这种电容不可替代贴片电容的缘故
您的位置 资讯中心 > 技术与应用 > 正文

一起说说这种电容不可替代贴片电容的缘故

2020-08-26 09:41:08 来源:电工之家 点击:2610

【哔哥哔特导读】你们是否也想知道直插电容可不可以代替贴片电容呢?在销售市场上很明显就是贴片电容器比直插电容器更加受欢迎,具体原因是什么呢?看看这篇文章你们就知道了。

有人问小编到底直插电容器可不可以代替贴片电容器呢?一般状况下,直插电容器不可以替代贴片电容器。下边小编会从五个层面论述缘故。

一:容积优点

因此同样阻值和抗压下,贴片电容器的容积更小,占有的空间更小,在现如今的高精密集成化的pcb线路板中,贴片电容器更火爆。下边例举出贴片电容器与直插电容器的容积差别。

贴片电容器的容积较为小,普遍的封裝有0402,0603,0805等。

直插电容器的容积就很大了,普遍的封裝有AXIAL-0.3、AXIAL-0.4、AXIAL-0.5、AXIAL-0.6、AXIAL-0.7、AXIAL-0.8、AXIAL-0.9、AXIAL-1.0。AXIAL-xx方式(例如AXIAL-0.3、AXIAL-0.4)的xx意味着焊层管理中心间隔为,计算关联为1 英尺 = 0.0254 米=2.54cm。

二:特性优点

在500MHz下列,直插式电容对頻率的适应能力差一些,而贴片电容器就相对性不错。

三:价格的优势

贴片电容器的低成本,自动化机械在生产制造贴片电容器的生产能力层面会高过直插电容器,且资金投入的人力成本也相对性少,因此由于贴片电容器的价格的优势,促使其占据的市场占有率大一些。

四:节约成本

在PCBA代工企业中,尤其是中小型的代工企业,假如订单信息量很大或是交货期应急,会应用波峰焊机,而开一次波峰焊机的成本费很高。假如人力电焊焊接,必须一个一个电焊焊接,不但消耗人力成本,并且高效率较低。最后,还必须提升一个弄断不必要的冒出的引脚的阶段。

可是如果是贴片电容的,则会防止这类状况,立即与别的贴片类的电子器件,立即历经回流焊炉电焊焊接。节省人力,提高工作效率。

五:有利于运送

在运送全过程中,直插电容器的引脚相对性非常容易损伤,而贴片就不容易出现这种状况。

扩展:常常会出现有点朋友们会把贴片电容器与贴片电阻器弄混,因为它们的加工工艺不一样,贴片电容器的是沒有丝印的,而贴片电阻器处0201封裝外,其表层的丝印油墨会刻上它的电阻值。

结果:以上便是小编觉得直插电容器不可以替代贴片电容器的缘故。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

阅读延展
贴片电容 电容 电容器
  • 贴片电容受到大家喜欢的缘故

    贴片电容受到大家喜欢的缘故

    电容器的种类有很多,其中比较受欢迎的是贴片电容器,下面会介绍到为什么贴片电容器会那么受到大家的喜欢,然后还会分享到如何正确检测贴片电容器的好坏。

  • 一起来分享有关检查电容器的窍门吧

    一起来分享有关检查电容器的窍门吧

    传统式的电容器的体积比较大,已经满足不了人们的多种需要了,但是贴片电容器就不一样了,它具有体积小、使用时间长、耐高温等多种优点,因此受到了大家的一致好评,那么你知道当贴片电容器出现故障时,首先我们应该怎么做吗?

  • 鉴别电容的技巧 一起学习下吧

    鉴别电容的技巧 一起学习下吧

    电容器是我们经常会运用到的元器件之一,随着时代的发展,一般的电容器已经满足不了我们的需求了,因此贴片电容器就诞生了,关于贴片电容器的一些小知识,你有兴趣的可以看看这篇文章噢!

  • 一起聊一聊安规电容

    一起聊一聊安规电容

    我们都清楚电容器的品种是多种多样的,之前我们就分享过贴片电容、超级电容器等,今天给大家深入介绍一下安规电容,小编会从两个方面来介绍安规电容,下面大家就跟着小编一起来认识一下安规电容吧!

  • 分享电容器中的贴片电容 一起来了解吧

    分享电容器中的贴片电容 一起来了解吧

    本文首先介绍了贴片电容在电路中有什么作用;其次介绍了贴片电容在电路中的滤波、退耦、耦合等电容器的主要作用,最后介绍贴片电容的五个特点以及贴片电容需要注意的地方。

  • 一起来聊聊电容器 你对它了解多少呢

    一起来聊聊电容器 你对它了解多少呢

    本文首先介绍了贴片电容跟贴片电阻一样,都属于最基本的电子元件,基本上所以的电子设备都会有电容器的存在,不过不同位置的电容所起到的作用是不一样的,然后介绍贴片电容的六个作用。

  • 绿宝石二十载:如何打破国外在高端电容市场的垄断?

    绿宝石二十载:如何打破国外在高端电容市场的垄断?

    作为本土电容器企业,绿宝石凭借二十年的技术创新与市场深耕,在高端电容市场取得了显著突破。从铝电解电容器到叠层式固态电容器,绿宝石是如何做到的?

  • 施主掺杂对ZnO压敏电阻电气性能的影响

    施主掺杂对ZnO压敏电阻电气性能的影响

    研究了铝离子、铟离子共同掺杂对ZnO压敏电阻的微观结构和电学性能的影响。通过X射线衍射、扫描电子显微镜对微观结构进行了表征,通过电流-电压测试、脉冲电流冲击测试和电容-电压测试对电性能进行了评估。

  • 用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    Littelfuse公司发布了电子保险丝保护集成电路系列的最新成员——LS0502SCD33S。 这款新开发的产品引入了单电池超级电容器保护集成电路,专为极端条件下的备用电源充电而定制,在该领域树立了新的基准。

  • 交错并联LLC谐振变换器的磁集成均流特性研究

    交错并联LLC谐振变换器的磁集成均流特性研究

    为了扩充容量,LLC谐振变换器多采用两相或多相交错并联结构。然而,由于交错并联LLC谐振变换器中各并联相的谐振元件参数(主要包括谐振电感和谐振电容)不可避免地存在偏差,使得各相LLC谐振变换器之间的电压增益不相等,导致各相电流不均衡。

  • 创新驱动·擎领未来!深圳电机展商名单公布

    创新驱动·擎领未来!深圳电机展商名单公布

    2023年(第五届)领芯微中国电机智造与创新应用暨电机产业链交流会即将在深圳登喜路国际大酒店举行,囊括电机主控MCU、功率器件、电源IC、测试设备、保护器件、电容的20多家代表厂商将展示他们的最新技术和最前沿的产品。

  • 新型小损耗角磁心磁化特性脉冲测量法

    新型小损耗角磁心磁化特性脉冲测量法

    针对小损耗角和高饱和磁通密度的金属磁粉心的磁化特性难以测量的问题,本文提出新型脉冲测量法,预置偏置电压的电容通过RLC振荡放电给被测磁性元件施加脉冲激磁电压,利用磁导率为真空磁导率的空心电感为标准磁性元件消除传统脉冲测量法的数值微分误差。

  • 绿宝石二十载:如何打破国外在高端电容市场的垄断?

    绿宝石二十载:如何打破国外在高端电容市场的垄断?

    作为本土电容器企业,绿宝石凭借二十年的技术创新与市场深耕,在高端电容市场取得了显著突破。从铝电解电容器到叠层式固态电容器,绿宝石是如何做到的?

  • 用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    用于增强型备用电源解决方案的单芯超级电容器保护集成电路

    Littelfuse公司发布了电子保险丝保护集成电路系列的最新成员——LS0502SCD33S。 这款新开发的产品引入了单电池超级电容器保护集成电路,专为极端条件下的备用电源充电而定制,在该领域树立了新的基准。

  • 一种快速多相变换电感电压调节器

    一种快速多相变换电感电压调节器

    数据中心采用功能强大的应用于特定的集成电路(ASIC),这些电路消耗大量电流,例如高达1000安培,并且其功率需求波动迅速。由于各种因素,例如较大的输出阻抗、去耦电容器占用的空间越来越大等,传统上为此类负载供电的多相电压调节器正达到其性能极限。本文描述了一种多相变换电感电压调节器(TLVR)。

  • 压敏电阻的电容特性

    压敏电阻的电容特性

    压敏电阻两个电极之间都是氧化锌材料,平时就是呈高阻的近似绝缘体。所以压敏电阻就是相当标准的电容器结构。压敏电阻两电极间呈现的电容,在几百pF~几千pF之间,因而它不利于对高频电子系统的保护。对于频率较高的系统的保护,应选择电容低的压敏电阻。文章综述介绍了压敏电阻的电容特性。

  • 采用锂离子电容器的高效率储能系统

    采用锂离子电容器的高效率储能系统

    近年来,由火力发电或是汽车,排出CO2导致的全球变暖正急速加剧,法国巴黎2019年夏达到史上最高气温43℃,2021年夏科威特首都更不可思议的出现罕见的73℃高温。

  • 展商|高品科技携电容器产品亮相智能照明研讨会

    展商|高品科技携电容器产品亮相智能照明研讨会

    高品科技携铝电解电容器亮相智能照明研讨会。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任