广告
广告
了解这些 你也就了解和认识电感了
您的位置 资讯中心 > 技术与应用 > 正文

了解这些 你也就了解和认识电感了

2021-03-15 15:25:28 来源:知乎 点击:3177

【哔哥哔特导读】本文主要介绍了电感、电感线圈和线圈,电感是可以将电流转换成磁场能的元件,而电感值则表示电流产生磁场的能力,一般的电感都是内置铁芯的线圈。

电感是将电流变化为磁场能的元器件,电感值表明电流造成磁场的工作能力。同样电流下,将输电线绕成多匝线圈,能够增强磁场,在线圈内部添加例如变压器铁芯等导磁原材料,可大幅度增强磁场,所以,普遍的电感都是内置变压器铁芯的线圈。

电感

电感:当线圈经过电流后,在线圈中产生磁场感应,感应磁场又会造成磁感应电流来遏制经过线圈中的电流。大家把这类电流与线圈的相互影响关联称之为电的感抗,也就是所谓的“电感”,单位是“亨利”(H)。也可利用此特性制作成电感元器件。

电感是输电线内经过交流电流时,在输电线的内部周边造成交变磁通,输电线的磁通量与生产磁通的电流之比。当电感中经过直流电流时,其周边只呈现固定不动的磁力线,不会随时间的变化而变化;

但是当在线圈中经过交流电流时,其周边将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律—磁生电来分析,变化的磁力线在线圈两边会造成磁感应电势,这个感应电势等同于一个“新开关电源”。当产生闭合回路时,此磁感应电势差就需要产生磁感应电流。由楞次定律我们可以知道感应电流所造成的磁力线总量要试图阻拦磁力线的变化。磁力线变化来源于外加开关电源的变化,因此从客观效果来看,电感线圈有阻拦交流电路中电流变化的特点。电感线圈有与结构力学中的惯性相近的特点,在电学上大家取名叫“自感应”,一般在打开闸刀开关或接通闸刀开关的一瞬间,会产生火苗,这是因为自感现象造成很高的感应电势所导致的。

总而言之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交替变化而时刻在变化着,导致线圈造成电磁效应。这类因线圈自身电流的变化而造成的感应电动势,我们称之为“自感电动势”。不难看出,电感量仅仅只是一个与线圈的圈数、大小形状和介质相关的一个参量,它是电感线圈惯性的量度而与外加的电流不相干。

电感代用标准:1、电感线圈一定要原值代用(也就是线圈匝数相同,尺寸同样)。2、贴片电感只需要尺寸大小一样就可以了,还可以用0欧电阻或输电线代用。

声明:转载此文是出于传递更多信息之目的。若有来源标注错误或侵犯了您的合法权益,请与我们联系,我们将及时更正、删除,谢谢。

阅读延展
电感 电感线圈 线圈
  • 变压器电感线圈PIN脚氧化发黑原因分析与改善

    变压器电感线圈PIN脚氧化发黑原因分析与改善

    镀锡后引脚发黑,相信很多相关制造人员都有碰到过,到底是什么原因导致的呢?一名从事助焊剂相关工作多年的研究员,由他带领大家一起来解析一下其中的缘由。

  • 电感线圈Q值怎么界定 如何能让它涨起来?

    电感线圈Q值怎么界定 如何能让它涨起来?

    电感线圈在电源电路中是十分常用的,只不过分类也很丰富,按照不同的性质、形式或结构,都能分成多种类型,至于电感线圈Q值怎么界定?以下讲述的这些定义值得参考,据说,它的Q值越高越好,那么,要如何能让它涨起来呢?答案就在这里。

  • 电感线圈几个主要参数介绍

    电感线圈几个主要参数介绍

    电感线圈是电子产品中常用的元器件之一,通过电磁感应原理进行工作的。特性是“通低频,阻高频”,与电容器恰恰相反。

  • 助听器乃聋人之福音 它的电感线圈十分关键

    助听器乃聋人之福音 它的电感线圈十分关键

    助听器乃聋人之福音,这是毋庸置疑的,作为一种医疗电子设备,其电感线圈的应用也备受关注,像助听器这类型产品,它的电感线圈十分关键,至于电感线圈在助听器当中是怎样应用并开展工作的?看完这篇文就清楚了。

  • 助听中电感发挥着怎么是作用

    助听中电感发挥着怎么是作用

    助听器中电感为助听器用来接收磁信号的装置,流程是电感线圈感应磁场形成电流,受话器将电流转化为声音。在理想的情况下,电话设备磁化强度达到达到100mA/m时,助听使用者并能够听到有效的声音。

  • 车规电感随着发展趋势都满足了哪些规范要求

    车规电感随着发展趋势都满足了哪些规范要求

    电感线圈是电子线路中常用的电子器件之一,本质是用绝缘导线绕制而成的磁效应元器件。车规电感也是电感中的一种,在车辆中起到重要的作用,影响了车辆的一些功能以及性能,那么本文了解什么是车规电感。

  • 三线圈WPT系统的新型补偿网络设计

    三线圈WPT系统的新型补偿网络设计

    含有中继线圈的三线圈WPT系统可以提高系统的传输距离和传输效率,但在现有的补偿网络结构分析中未考虑非相邻线圈间的耦合影响(交叉耦合效应)。本文基于耦合电感模型分析并建立了传统自感谐振式SSS补偿结构的三线圈WPT磁耦合系统的数学模型。

  • 无线供电系统磁芯布局优化设计

    无线供电系统磁芯布局优化设计

    无线供电系统中线圈结构设计需要兼顾传输效率、抗偏移、重量、体积、漏磁等诸多关键指标,因此需要建立线圈结构的多目标优化模型以实现磁芯最优布局。本文以正对时互感和所占用体积为设计基准,研究原副边磁芯位移变化对互感、互感保持系数、体积和磁感应强度的影响。

  • 基于S/SP补偿的无线电能传输系统特性分析及线圈优化设计

    基于S/SP补偿的无线电能传输系统特性分析及线圈优化设计

    谐振式无线电能传输系统的磁耦合系统损耗与其线圈设计和补偿网络有关,该文根据电路理论分析磁耦合系统在S/SP补偿结构下的系统谐波特性,建立谐波影响下的S/SP补偿基波阻抗等效模型并提出基于线圈匝数的优化设计方法。

  • 为实现脱碳社会的超导磁能贮存(SMES)技术

    为实现脱碳社会的超导磁能贮存(SMES)技术

    所谓超导磁能贮存(SMES),是由超导线圈产生空间强磁场得到电能,并将这种电能以磁能的形式贮存的方法;也就是说,利用超导电阻为零的特性和利用超导线圈本身电感(inductance)不衰减电流并使其持续流动的性质,原封不动地将电力贮存起来的方法。

  • 松下汽车电感器如何助力产品创新?

    松下汽车电感器如何助力产品创新?

    谈及电感器,松下电器工业公司的特定产品组合与针对汽车应用需求量身定制的线圈广泛相关,并能够在汽车的典型且相当恶劣的条件下完美运行:高温、冲击和振动的影响对电子元件的坚固性、安全性和寿命提出了很高的要求。

  • 影响罗氏线圈性能的因素分析

    影响罗氏线圈性能的因素分析

    罗氏线圈电流互感器凭借测量精度高、测量频带宽和制作成本低等优点在智能电器中有着广泛的应用,而线圈匝数对罗氏线圈性能有关键影响。本文采用理论分析和软件仿真的方法,对影响罗氏线圈性能的因素进行分析。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任