广告
广告
干货丨膜包线如何通过选材实现降损效果?
您的位置 资讯中心 > 独家报道 > 正文

干货丨膜包线如何通过选材实现降损效果?

2024-12-06 16:07:02 来源:电子变压器与电感网 作者:丘水林

【哔哥哔特导读】大家有没有碰到这样的问题,花了更高的价格买来膜包线,却发现并没有实现降损的效果,问题到底出自哪里?膜包线到底该怎么选?

当高频交流电通过导体时,由于电磁感应的作用,导体中心的电流产生的磁场会在中心区域感应出电动势,产生涡流,这些涡流的方向与原电流相反,迫使电流往导体表面集中,从而形成趋肤效应

膜包线

膜包线,图片来源:骅鹰

当双线传输线的两根导线分别通过方向相反的交流电流时,各自产生的交变磁场相互在相邻的另一根导线上产生涡流。这种由相邻导线上的电流在本导线激发的涡流与本导线原有的工作电流叠加,使导体中的实际电流分布向截面中接近相邻导线的一侧集中,这就是邻近效应

两者正是高频涡流损耗的来源。

高频工作环境下,膜包线不能单纯认为股数越多越好。因为高频时,虽然膜包线股数增多使得单根导体股径变小,趋肤效应会得到改善,但同时膜包线内部邻近效应会增强。在一些超高频(如 GHz 级别)的电子设备中,如小型通信基站的电感元件,如果膜包线股数过多,膜包线内部邻近效应导致的损耗可能会抵消趋肤效应改善带来的益处。所以需要仔细评估膜包线的工作频率与股数之间的平衡关系。

对于低频工作环境,膜包线股数对趋肤效应和邻近效应的影响相对较小。但也要考虑其他因素,如膜包线成本和机械强度等。如果在一些低频但对成本敏感的应用场景,如普通低频变压器,就没有必要选择股数过多的膜包线,避免不必要的成本增加。

 高频涡流损耗机理与效应

高频涡流损耗机理与效应

对变压器、电感而言:

趋肤效应导致电流密度分布不均匀,从而引起损耗增加;

邻近效应引起进入导体磁通被抵消,从而引起磁通下降。

尤其是在电感中,邻近效应是主要的损耗来源。

膜包线的诞生和应用正是基于这一原理,同时其选型也受此制约。

 没有绞的多股并联导线

没有绞的多股并联导线

以没有绞合的两根线为例,其首尾是相通的,施加外部磁场时,闭合回路中会产生感应电动势EMF,进而产生同方向的电流(红色部分),叠加原来的电流,会导致整个闭合回路出现不均流(I1<I2),从而带来损耗增加。

所以没有绞合的多股膜包线是起不到降低损耗的效果的,哪怕股数再多也是。为了避免这个问题,膜包绞合线应用而生。

有绞的多股并联导线

有绞的多股并联导线

绞合后,感应电动势相互抵消,在整个闭合回路中没有感应电动势,也就没有涡流,从而实现均流效果降低损耗

这就是多股绞线的基本原理,通过绞合让电流均匀分布于每根导体。

所以,对于膜包线或者利兹线而言,影响其性能的主要就是股径、股数、绞距和绞制方式。

尤其是股径和股数,是膜包线最核心的两个参数。

那么,在选用过程中,膜包线股数是越多越好吗?答案是也不一定!

膜包线股径大小直接影响电流承载能力。较小的股径在高频下能有效减轻趋肤效应,但如果股径过小,可能无法满足所需的电流承载要求。例如在功率较大的电机绕组中,如果选用的股径过小的膜包线,可能会因为电流过载而发热,甚至损坏绝缘层。

膜包线股径和股数是相互关联的。在确定股径时,要结合股数一起考虑。当膜包线股数增加时,膜包线股径相应减小,需要评估这种变化对整体性能的综合影响,包括涡流损耗、机械强度等多个方面。

 膜包线

膜包线,图片来源:骅鹰

膜包线绞距对绞合线的性能有重要影响。合适的绞距能够更好地抵消感应电动势,实现均流效果。如果膜包线绞距过大,可能无法有效抵消感应电动势,导致涡流损耗增加;膜包线绞距过小,则可能会使绞合线过于紧密,影响其柔韧性和散热性能。比如在一些需要频繁弯曲的线路连接中,绞距过小的膜包线可能容易断裂。

不同的绞制方式(如正规绞合、复合绞合等)也会影响膜包线的性能。正规绞合结构简单,性能稳定,适用于大多数常规应用;复合绞合则可以通过不同的组合方式来满足特殊的性能要求,如抗干扰能力强等,但膜包线成本可能相对较高。在选用时要根据具体的应用场景和性能要求来选择膜包线合适的绞制方式。

 膜包线

膜包线,图片来源:骅鹰

在高频下,对每一根导体而言,由于单根导体股径变小,所以趋肤效应得到了很明显的改善。

但这时候,其他导体的磁场都会作用于这个导体,会产生感应电动势。

 多股绞线涡流损耗机理

多股绞线涡流损耗机理

对于多股绞线的每一股而言,绞合后其他导体的电流会对其产生内部邻近效应,且股数越多,内部邻近效应越强。

多股绞线涡流分布比较

多股绞线涡流分布比较

虽然趋肤效应降低了,但内部邻近效应增大,无法起到降损效果。所以在选用过程中,具体要怎么去平衡,就需要综合考虑产品的频率和股数、股径之间的关系。

膜包压方线

膜包压方线,图片来源:骅鹰

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;

阅读延展
膜包线 损耗 邻近效应
  • 关于方膜包线如何处理焊锡工艺问题解析

    关于方膜包线如何处理焊锡工艺问题解析

    目前市场使用覆膜的绝缘材料为耐高温的高温胶带膜Class H,但这种覆膜高温的lizt wire 对变压器电感生产工艺带来很多问题点,比如焊点大导致不能装入PCB,引线尺寸不稳定,绞线断线等问题。

  • 车载磁性元件将全面使用膜包压方线?

    车载磁性元件将全面使用膜包压方线?

    更小的体积,更好的电气性能,膜包压方线受到越来越整机企业的青睐,尤其是未来车上功能越来越多,充电功率越来越大,膜包压方线在车载领域能否全面替代现有的膜包线?

  • 应用于一体成型电感的羰基铁-非晶混合软磁金属粉末

    应用于一体成型电感的羰基铁-非晶混合软磁金属粉末

    将羰基铁粉末与非晶粉末按照不同比例混合后钝化、包覆、压制成磁(芯)环,测试和分析了其磁环密度、磁导率、直流叠加特性及损耗性能。结果表明,相对于非晶粉末,羰基铁粉具有密度高、磁导率高、损耗低的优点,两种粉末均具有良好的抗直流叠加特性。

  • 邻近效应解释

    邻近效应解释

    邻近效应 - 一种电磁现象,导致交流电流在多匝绕组或附近导体中分布不均匀,与直流电流相比,这可能导致功率损耗显着增加。由邻近效应引起的额外功率损耗称为邻近损耗。

  • 基于量热法的高频磁元件损耗测量系统

    基于量热法的高频磁元件损耗测量系统

    在磁芯损耗测量中量热法通常用于验证电气测量方法的精度。

  • 微硕:FP97材料引领中低频应用领域新潮流

    微硕:FP97材料引领中低频应用领域新潮流

    磁性材料新突破!微硕电子研发的FP97材料如何在宽温下实现低损耗?这款材料又将如何引领电子行业变革?

  • 省首批次丨东磁一新材料获认定

    省首批次丨东磁一新材料获认定

    近日,浙江省经信厅公布了2024年度浙江省首批次新材料认定结果,横店东磁“高Bs宽温低损耗软磁铁氧体材料”获认定。

  • 基于电感磁路完整性的可变形磁芯研究与设计

    基于电感磁路完整性的可变形磁芯研究与设计

    由于智能设备的小型化、轻量化发展趋势,对电感器件的集成性和稳定性提出了更高的需求。本文根据电感器件中磁路完整性原理,结合对气隙-电感值关系的研究,对磁芯结构进行优化,设计了弧形面契合的可变形磁芯,以达到高空间利用率、低磁损耗,降低工作电感波动。

  • 邻近效应解释

    邻近效应解释

    邻近效应 - 一种电磁现象,导致交流电流在多匝绕组或附近导体中分布不均匀,与直流电流相比,这可能导致功率损耗显着增加。由邻近效应引起的额外功率损耗称为邻近损耗。

  • 平面磁性元件高频绕组损耗原理及其测量

    平面磁性元件高频绕组损耗原理及其测量

    随着开关电源频率的不断提升,磁性元件中导体的涡流损耗成为设计时的重点关注部分。本文以平面型电感器为研究对象,将导体的涡流损耗分解为集肤效应损耗和邻近效应损耗,利用数值计算的方法探索集肤效应损耗的影响因素,并借助半近似解析式获取电感器中的邻近效应损耗。

  • 基于镜像法的变压器空心管型绕组损耗计算

    基于镜像法的变压器空心管型绕组损耗计算

    随着变压器工作频率的提高,集肤效应和邻近效应引起的绕组涡流损耗也随之提高。将空心管型绕组应用于中频变压器,不但可以提高绕组材料利用率,同时能改善变压器的散热效率。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任