广告
广告
光子晶体光纤的产业趋势与观察
您的位置 资讯中心 > 产业新闻 > 正文

光子晶体光纤的产业趋势与观察

2012-02-14 15:07:25 来源:大比特电子变压器网

【哔哥哔特导读】光子晶体光纤(PCF),是在1987年提出的光子晶体概念基础上,由1995年开始付诸实现的光纤。光子晶体光纤是一种新型光纤,其结构和导光机理都与普通光纤不同,呈现出许多在传统光纤中难以实现的特性,并因此受到广泛关注。在光子晶体光纤中的光纤芯径中进行的光波导传送原理是:全反射及光子带隙(PBG)。

摘要:  光子晶体光纤(PCF),是在1987年提出的光子晶体概念基础上,由1995年开始付诸实现的光纤。光子晶体光纤是一种新型光纤,其结构和导光机理都与普通光纤不同,呈现出许多在传统光纤中难以实现的特性,并因此受到广泛关注。在光子晶体光纤中的光纤芯径中进行的光波导传送原理是:全反射及光子带隙(PBG)。

关键字:  光子晶体,  半导体,  多孔光纤

光子晶体光纤(PCF),是在1987年提出的光子晶体概念基础上,由1995年开始付诸实现的光纤。光子晶体光纤是一种新型光纤,其结构和导光机理都与普通光纤不同,呈现出许多在传统光纤中难以实现的特性,并因此受到广泛关注。

在光子晶体光纤中的光纤芯径中进行的光波导传送原理是:全反射及光子带隙(PBG)。

在光纤芯径中空的情况下,依据对包层通过周期性结构的设置,会产生与半导体能隙类似的PBG光纤。在固体芯径的情况下,在包层中插入高折射率芯棒,会生成抗谐振反射。该光纤也被称为多孔、微结构光纤。

作为全反射的应用例子,在历来的阶跃式石英光纤的包层上,留有空孔,就成为多孔光纤(holeyfiber)。在包层上设置的空孔,会改变包层折射率,光波会在光纤芯径、包层边界上发生全反射,光波只能限制在光纤芯径中传播。这也是传统单模光纤原理,具有可减少弯曲损耗和可控零色散波长的良好优势。目前,多孔光纤已经实现了与常规光纤接近的损耗水平,并已开始提供商用。

基于上述原理,可以说这就是光子带隙光纤(PBF)。拥有空心芯径和包层折射率周期性结构,能够区分为在包层上设置空气孔光纤PBF,和在包层上把与轴成对称的高、低折射率层成周期性配置的光纤(即柱状光纤)。如果在包层中插入一个高折射率实芯棒,就可使光波在光纤芯径中传播,它被称为全固体光纤或光偏振模光纤。

在光纤芯径中空的情况下,假如能够把光有效地限制在芯径中,就能够实现低损耗、低色散,并减少非线性影响,使光通信用高功率传送成为可能。提高发送光功率,对提高传输距离,至关重要。

光子晶体光纤,具有在石英玻璃中(包层)有空孔的配列构造。随着PCF的空孔阵列结构和空孔尺寸大小的变化,将呈现出与通常光纤不同的特点,即表现在高非线性、色散可控性、极化波保持和单模工作等各方面上。如果将PCF光纤光波传输原理进行分类,可以分为折射率波导型PCF光纤和光子带隙光纤两种。

折射率波导型PCF光纤,通常光纤芯径是玻璃,在包层上有空孔存在。传统光纤在包层部通过添加化合物而使其折射率比光纤芯径低,光波就被局限在光折射率较高的芯径中传播,PCF光纤因包层部的空孔使得实际的折射率比光纤芯径的折射率低,从而实现光的全反射。

PBF光纤是由光子带隙结构所构成的一种闭合光的光纤。芯径是空洞,把二维的空孔配置在包层中,把反射光局限在光纤芯径内进行传播。对光纤结构要求有严格的周期性,同时要求空孔尺寸大小必须均一性。像这样的光子晶体光纤,通过让包层和芯径实际的折射率产生差异,使它比一般光纤更具优势,即可自由设置,即使在短波长范围内,也可构成单模光纤,同时还可实现大芯径的单模光纤。

进而把在光纤中的导波路,分散在很宽的范围内,以实现在短波长段零色散等各种各样光纤,和芯径非圆形的偏振模保持光纤。这将使光纤传输通路,得到极大提高。目前美日等国,都有光子晶体光纤光缆面市,这将使光缆通信跨入到一个新阶段。

本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;

阅读延展
光子晶体 半导体
  • 微纳光学在LED芯片中应用研究的综述

    微纳光学在LED芯片中应用研究的综述

    LED以其高效节能、体积小、寿命长等优点被认为是最有可能进入普通照明领域的一种新型固态光源,但LED芯片的光提取效率仍较低。综述了LED外延片表面的各种基于微纳光学结构的加工技术,如通过在LED芯片表面上加工粗糙微结构、LED芯片表面双层微结构、二维光子晶体结构、双光栅结构等。

  • LED表面粗化技术相关国内专利浅析

    LED表面粗化技术相关国内专利浅析

    人们从调整LED芯片结构和封装形式等多个角度发展出了诸如图形衬底、光子晶体、表面粗化、倒装芯片、梯形芯片和二次光学设计等多种光萃取技术,以提高LED芯片的外量子效率。由于这个技术领域的重要性,这也恰是LED相关专利密集分布的区域之一。

微信

第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!

发表评论

  • 最新评论
  • 广告
  • 广告
  • 广告
广告
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任