美研发合成聚合物能增强疾病治疗潜力
2013-04-09 11:59:54 来源:大比特商务网 点击:1081
【哔哥哔特导读】该方法“进化”出的合成聚合物或可具有新的,或改进性的功能,如作为化学反应催化剂或是增强疾病治疗潜力。
摘要: 该方法“进化”出的合成聚合物或可具有新的,或改进性的功能,如作为化学反应催化剂或是增强疾病治疗潜力。
据物理学家组织网4月报道,美国哈佛大学研究团队开发出一种新方法,可利用遗传物质密码创建合成聚合物。该方法“进化”出的合成聚合物或可具有新的,或改进性的功能,如作为化学反应催化剂或是增强疾病治疗潜力。相关研究成果发表在最新一期《自然·化学》上。
在生物学中,像DNA(脱氧核糖核酸)、RNA(核糖核酸)和蛋白质这样的大分子是最常见的聚合物,这些聚合物具有显著的特性。相比而言,人类创建带有量身定制性能的人造聚合物的能力却非常有限。曾有研究人员设法利用遗传密码创造出合成聚合物,但他们的努力常常受阻于新分子一定要与创建它们的基因模板相似。
为了解决这个问题,哈佛大学化学生物学教授刘大维(音译)领导的团队转向一个可在自然界中发现的类似过程。该系统不允许新聚合物模块直接与DNA模板发生作用,而是依赖于一个“转接器”分子。每个转接器都带有聚合物的一部分,与模板绑定后形成新的聚合物。在过程的最后一步中,转接器被切断,让合成聚合物根据基因模板创建出来。
该系统的一个有趣功能是由此产生的合成聚合物不必与DNA模板具有任何结构关系。该系统与 DNA碱基相结合的部分是转接器分子,所以可从模板中进行物理删除。该整体策略严重“抄袭”自然界中的蛋白合成过程,即tRNA(转移核糖核酸)分子绑定一个信使RNA链,其携带的氨基酸拼接形成蛋白质。
理论上讲,由基因模板引导创建的新合成聚合物也能“进化”出独特的性能,而这几乎不可能在实验室中设计出来。譬如,假设你想创建一个合成分子,其能打开与癌症相关蛋白的一个特定基因的表达。你可能会检索现行研究成果,寻找关于如何建立这样一个分子的线索,你或许还会用你的化学知识确定哪些分子是可能的。但是,对于这种复杂的分子目标,这些努力常常是无功而返。
进化的力量使实现这些雄心勃勃的目标变得更为可行。绑定某个非常明确的分子并创造生物反应,对于高分子科学家来说要从零开始设计是非常困难的,但对大自然的进化来说并不难。大自然经历了数百万几代人的半随机尝试,每一代中策略的最成功部分通过其分子秘密传给下一代。进化是迭代的,任何一代的小进步,都被继承下来并在以后发展成重大的成功。
刘教授表示,他的下一个目标是要利用这个系统进化出能实现更为复杂功能的合成聚合物,然后将其折叠成结构化的三维形状,绑定到具有生物医学或化学用途的特定分子,并最终催化化学反应。
本文为哔哥哔特资讯原创文章,未经允许和授权,不得转载,否则将严格追究法律责任;
进入21世纪,随着生物科技发展,生物科技与电子芯片技术相整合获得了生物芯片,生物芯片是一个大体的定义,能够分为dna芯片、蛋白芯片、组织芯片、细胞芯片等。
如果要评选一个人类历史上最伟大的发明,那么显微镜一定能名列前茅。
本月初,IBM宣布了5纳米芯片全新技术,而在去年10月,美国劳伦斯伯克利国家实验室成功研发出栅极仅长1纳米的晶体管——比一条DNA链还小。 随着摩尔定律濒临极限,今后我们手机、电脑里用的芯片会变成什么样?
在汽车行业,玩灯是一门艺术,一副设计感良好的大灯可以让你的爱车瞬间璀璨生辉。作为汽车面部最重要的表情之一,车灯的造型已经成为描述汽车个性的特殊设计语言,豪华品牌更把大灯设计作为品牌家族的DNA,展现品牌魅力。
近年来,高分子磁性微球的相关研究取得了巨大的进步和丰硕的成果,我们可以发现高分子磁性材料正越来越多地应用在标记和分离DNA 、蛋白质、细菌和其他生物组分等领域,同时也被应用于磁共振成像(MRI)、磁性细胞溶解技术、药物靶向输送等重要领域。
由Jae-Hyun Chung负责的研究团队则提出了一种全新的解决方案--一种可在血液、唾液或者痰样本中进行探测的显微探头。
第一时间获取电子制造行业新鲜资讯和深度商业分析,请在微信公众账号中搜索“哔哥哔特商务网”或者“big-bit”,或用手机扫描左方二维码,即可获得哔哥哔特每日精华内容推送和最优搜索体验,并参与活动!
发表评论