哔哥哔特网旗下:
技术与应用分类

该文重点研究了如何利用CPLD 来连接基于ARM 的嵌入式系统与CF 卡。其中使用的CPLD 不但简化了接口电路,使其适合现场编程,同时改进的接口电路还适合产生各种复杂组合逻辑和时序逻辑。这种存储技术的正确性已在电路板上得到验证,它为基于ARM 的嵌入式系统的CF 卡存储提供了一种有效的解决方案。

本文介绍的电镀用开关电源,输出电压从0~12V、电流从0~5000A 连续可调,满载输出功率为60kW.由于采用了ZVT软开关等技术,同时采用了较好的散热结构,该电源的各项指标都满足了用户的要求,现已小批量投入生产

本文介绍一种在嵌入式数字信号处理器(DSP)OMAP5912上使用简单的数字电源实现系统低功耗设计的方法。使用TI公司的电源转换和电压监控芯片TPS65010实现对DSP系统各种状态的检测。在不同状态下输出不同的供电电压,减小供电电流,实现整个系统的低功耗运行。该设计方法适用于各种低功耗要求的手持电子设备。

本文分析了太阳能逆变器应用的全桥拓扑。这种拓扑利用正弦脉宽调制技术,在高于20kHz情况下,为高压侧IGBT 进行转换。支线的低压侧IGBT决于输出频率要求,在50Hz或60Hz进行转换。若挑选最新的600V槽栅IGBT,其总功耗将会在20kHz下达到最低。在低压侧IGBT方面,标准速度平面式IGBT是最佳选择。标准速度IGBT在50Hz或60Hz下...

案例监控是随着人们生活生产需求应运而生的一项安全技术,安防系统由前端、传输、信息处理/控制/显示/通信三大单元组成。云台系统作为前端转动控制部件,在整个系统中起到非常重要的作用。

2011-11-29关键字:案例监控安防系统通信分类: 半导体

EFM32 具有优异的低功耗特性非常适合于对于低功耗有苛刻要求的运动手表的应用。它的内核采用运算性能突出的Cortex-M3 设计,极大地缩短了运动手表扩展功能应用中的算法处理时间,提高了系统的性能。同时,它具有良好的集成度、丰富的外设,为系统扩展功能及降低成本提供了条件。因此,EFM32 是作为高端运动手表主控MCU ...

EFM32具有低功耗性能优异的外设:片上12bit的ADC在1Msps的速率下,功耗电流仅需350μA;模拟比较器工作仅需100nA;LCD驱动8×36段LCD显示,仅需0.55μA;全功能的LEUART,在9600bps的速率下,功耗电流仅需150nA;AES执行128/256bit AES加/解密仅需54/75个时钟周期。

EFM32 具有优异的低功耗特性,且集成了个性化的低功耗外设部件,非常适合于三表、智能家居控制、安防监控、便携式医疗等领域的应用。如果您对于EFM32 的应用和需求有更多的想法和意向,请与北高智公司联系,我们将竭诚为您服务。

本文将讨论各种OLED技术和适当的偏压电源供应电路,而关于OLED技术和驱动方法的选择,也会影响电源供应电路的需求。工程师所面临的挑战为如何选择最适当的电源供应电路,以便支持电池供电型可携式装置,以及特定OLED显示器的需求。

本文提出了一种基于单片机控制的超声波定位前方物体的监测控制系统。通过一左一右的双超声波接收头检测信号,送单片机进行数据计算处理,能够精确计算与障碍物的距离,同时判断该障碍物是否位于车辆行径的路线上。从而能保证车辆行驶中能准确避障。实验测试系统表明,该系统有效距离可达8m,测量精度可达0.05m,小车能自...

本文介绍了一款具有温度自动补偿的高精度实时时钟,其可以提供从 -40 至 85 ℃ 的 ± 5ppm 的系统精度,该成果打破了国外在高端实时时钟芯片上的垄断。

ZigBee无线通讯技术作为当前应用最为广泛的无线传感器网络技术的代表在自动抄表产品中已经有初步的应用,但是多以抄表器上传通讯手段的方式在自动抄表中应用,随着微电子技术和嵌入式技术的发展,抄表器的功能完全可以由智能电能表兼容,因此自动抄表系统中的抄表器及其下层附属的各个电表完全可以由一个采用ZigBee通讯...

LM3S1960是Luminary公司推出的高性价比微处理器。它具有256 KBFlash,64 KB RAM,4个32位定时器,6个运动控制PWM,3个UART,2个I2C,2个SSI以及60个用户可用I/O。LM3S1960最高运行频率为50 MHz,其所有GPIO输入可触发中断,支持IRDA的UART,非常适合嵌入式控制系统。

光电逆变器的一般结构如图1所示,有三种不同的逆变器可供选择。太阳光照射在通过串联方式连接的太阳能模块上,每一个模块都包含了一组串联的太阳能电池 (Solar Cell)单元。太阳能模块产生的直流 (DC) 电压在几百伏的数量级,具体数值根据模块阵列的光照条件、电池的温度及串联模块的数量而定。

通信电源被称为通信系统的心脏,电源系统将直接影响通信系统的可靠性和稳定性。目前,通信系统电源供电大都是由不间断的蓄电池提供的,蓄电池温度过高势必影响到电池的工作效率和寿命。因此对蓄电池的工作温度进行实时的监测具有实际意义。美国APC公司的一项调查结果表明,大约有75%以上的通信系统故障都是由于电源设备...

2011-11-25关键字:通信电源蓄电池键盘控制模块分类: 半导体

本文设计的LED 路灯驱动电路采用市电供电且不用电源变压器,驱动电路体积大为减少。驱动电路实现恒流驱动的同时带有PFC 功能,符合当前绿色环保的要求,而且驱动电路转换效率高,电路较新颖; 智能调光电路采用PWM 调光方式,LED 发出较纯的白光,不产生色偏。

光伏发电系统的能量输出因周围环境的变化而表现出较大的差异,对光伏发电系统进行实时监测,可以获得原始测量数据,为系统的改进与优化以及以后的科学研究提供有用数据,对系统环境参数及其系统本身的电气性能进行监测和分析是保证系统正常高效运行的前提。

2011-11-25关键字:光伏发电远程数据监测传感器分类: 半导体

随着LED照明产业不断发展以及各国能源标准的出台,在保证转化效率的前提下,LED照明的电源的发展将继续朝着更小体积、更少元件、更高精度、更利于生产的方向发展,因此,新的电源芯片恒流控制技术以及单级APFC技术的进一步完善成熟,对于LED照明电源性能的提升和成本下降、体积的缩小起到非常显著的作用。

LED点阵显示屏是一种简单的汉字显示器,具有价廉、易于控制、使用寿命长等特点,可广泛应用于各种公共场合,如车站、码头、银行、学校、火车、公共汽车显示等。本文详细介绍了一种低廉的16x64点阵LED显示屏的设计过程。

您在为一个低功耗、离线电源选择输入滤波电容时,会出现一种有趣的权衡过程。您要折中地选取电容的纹波电流额定值,以适合电源工作所需的电压范围。通过增加输入电容,您可以获得更多纹波电流的同时还可以通过降低输入电容的压降来缩小电源的工作输入电压范围。这样做会影响电源的变压器匝数比以及各种电压及电流应力。...

2011-11-25关键字:低功耗离线电源整流器分类: 半导体

现今智能手机的功能除了基本的拨接电话和收发短信之外,还加入了人性化的触摸屏用户界面(UI),将传统的按键输入转换为在3.5英寸或4英寸的大屏幕上直接以指尖触控输入。全球卫星定位系统(GPS)可以让用户本人或想要帮助用户摆脱困境的人得知用户手机所在的确切位置。

2011-11-25关键字:移动电话生活必需品智能手机分类: 半导体

本文将分析现有设计功率因数低的原因,探讨改善功率因数的技术及解决方案,介绍相关设计过程及分享测试部分数据,显示这参考设计如何轻松符合“能源之星”固态照明规范对住宅LED照明应用功率因数的要求。

考虑到便携式整机的开发与存储器的普及程度,本方案选用MicroSD卡作为音频数据存储单元。MicroSD卡体积超小,却拥有着传输速度高、移动灵活性强、安全可靠的诸多优势,可以运用于各类的数码产品,不浪费产品内部设计的空间。同时,它采用FAT16/32文件系统,且提供了SPI接口,便于消费者文件下载与管理。

分析iPhone所以造成热购风潮,其主要特色为,iPhone具有炫丽的萤幕画面,不但有宽广清晰的视角表现,更有同时多点操作触控萤幕功能特色,在此同时,随着苹果iPhone產品发表,也带动触控式显示面板商机,触控面板吸引更多消费电子產品仿效、采用,包括:手机、NB、MP3、超迷你电脑(UMPC)…等可携式电子配备,渐有相关应用...

2011-11-24关键字:NBMP3面板技术音乐播放机分类: 半导体

现在的手机用户要求繁多,包括大尺寸的触摸屏、数百万像素的相机、蓝牙及802.11 WiFi连接、全面的网络浏览、电邮和数据库访问、GPS导航、音乐及视频下载,以及即将实现的移动数字电视。所有这些热门功能都需要使用电能。手机是经由电池供电的,而电池可通过各种不同的电源进行充电,如汽车上的点烟器(电源转换器)、商业...

 
独家
系统功能集成方向对磁集成将产生哪些影响?目前各个终端市场...详细>>
PCB绕组取代线圈的变压器、电感产品,主要会用在哪些场景?具...详细>>
膜包压方线该如何降低生产过程中受力不均匀的问题,从而避免...详细>>
专题
小度不仅“参加”过脱口秀,“上”过春晚,还一度成为5月与6...详细>>
国家大力推动5G网络的建设中,5G基站电源应用目前面临着怎样...详细>>
2022年二季度,美联储加息愈加激进,但通胀率不降反升,全球...详细>>
Big-Bit会议
热门推荐
超强型计算机应用刺激了大规模专用人工智能基础设施的发展。...详细>>
光缆以其处理大量信息的速度和能力而闻名。然而,对在极端条...详细>>
电池、电池管理系统和电池储能技术迅速发展,新的互连解决方...详细>>
点击排行
粤B2-20030274号   Copyright Big-Bit © 2019-2029 All Right Reserved 大比特资讯 版权所有     未经本网站书面特别授权,请勿转载或建立影像,违者依法追究相关法律责任